Differences between EN 13001-3-1:2025 and EN 13001-3-1:2028

The most significant differences concern the static proofs of fillet welds. EN-Kran offers the possibility to choose between the application of the two editions:

Default setting:

- Restart of older projects starts with edition 2018
- Start of new projects begins with edition 2025

Now the other edition can optionally be chosen. Further starts of the project begin with the last chosen edition.

Consequences of the edition EN 13001-3-1:2025

The Table 8 — Factors $\alpha_{\rm w}$ for limit weld stresses and the requirement for A-dimensions of fillet welds a \leq 0.7 * $t_{\rm min}$ are dropped, i.e. greater A-dimensions are allowed and the proof of static strength may be verified with these welds.

However, an additional value is necessary: f_{yw} the yield strength of the weld material (property of filler metal). Everywhere where EN-Kran expects input of A-dimensions the input of f_{yw} is necessary, too:

Example of input of welds of Box girders:

EN-Kran uses as default value 235 N/mm² (equivalent to the minimum values of plate material S235). You should change this value to the actual value of used weld material.

The previous weld stress sigma-z is vectorially splitted into $\sigma \bot$ and $\tau \bot$. For the proof of static strength it must be shown (according to equation 28 if EN 13001-3-1:2025), together with $\tau = \tau \parallel$ that

$$\sqrt{\left(\sigma \perp^2 + 3*(\tau \perp^2 + \tau^2\right)} \le f_{yw}/\gamma_m$$
 and $\sigma \perp \le f_y/\gamma_m$

Important:

- A-dimensions that were in compliance with the requirements of the sum formula of EN13001-3-1:2018 may no longer be sufficient due to the multiplication with factor 3 of $\tau \perp^2$. In such cases either the A-dimension or f_{yw} shall modified.
- However, in the proof of fatigue strength for fillet welds below the crab rail the details 3.13 and 3.14 of Annex D still require $0.5*t \le a \le 0.7*t$.